LOADING

進度條正在跑跑中

統計學(三)


卡方分佈

ZN(0,1)Z \sim N(0, 1) 為常態隨機變量

平均數:E(V)=nE(V) = n
變異數:Var(V)=2nVar(V) = 2n

自由度為1的卡方分佈

  • 定義: Uˉ=Z2\bar{U} = Z^2 為自由度為1的卡方分佈,記為 χ2(1)\chi^2(1)
  • cdf:F(u)=P(Uˉu)=P(Z2u)=P(uZu)=Φ(u)Φ(u)F(u) = P(\bar{U} \leq u) = P(Z^2 \leq u) = P(-\sqrt{u} \leq Z \leq \sqrt{u}) = \Phi(\sqrt{u}) - \Phi(-\sqrt{u})
  • pdf:f(u)=ϕ(u)12u1/2=ϕ(u)12u1/2\displaystyle f(u) = \phi(\sqrt{u}) \frac{1}{2} u^{-1/2} = \phi(-\sqrt{u}) \frac{1}{2} u^{-1/2} = 12πeu/2u1/2\frac{1}{\sqrt{2\pi}} e^{-u/2} u^{-1/2}, u>0u > 0

自由度為n的卡方分佈

  • 定義:U1ˉ,U2ˉ,...,Unˉ\bar{U_1}, \bar{U_2}, ..., \bar{U_n} 為獨立且服從 χ2(1)\chi^2(1) 的隨機變量,則 V=i=1nUiˉV = \sum_{i=1}^{n} \bar{U_i} 稱為自由度為n的卡方分佈,記為 χ2(n)\chi^2(n)
  • pdf:f(v)=12n/2Γ(n/2)vn/21ev/2\displaystyle f(v) = \frac{1}{2^{n/2} \Gamma(n/2)} v^{n/2 - 1} e^{-v/2}, v>0v > 0

如果 VVUU 獨立,且 Vχ2(m)V \sim \chi^2(m), Uχ2(n)U \sim \chi^2(n),則 V+Uχ2(m+n)V + U \sim \chi^2(m + n)

  • 證明:
    Mi=1mUiˉ(t)=i=1mMUiˉ(t)VP(n2,12)\displaystyle M_{\sum_{i=1}^{m} \bar{U_i}}(t) = \prod_{i=1}^{m} M_{\bar{U_i}}(t) \Rightarrow V \sim P(\frac{n}{2}, \frac{1}{2}),

    一般化:VP(n2,12)\displaystyle V \sim P(\frac{n}{2}, \frac{1}{2}), UP(m2,12)\displaystyle U \sim P(\frac{m}{2}, \frac{1}{2}),則 V+Uχ2(m+n)\displaystyle V + U \sim \chi^2(m + n)

t分佈

  • 定義:ZN(0,1)Z \sim N(0, 1), Vχ2(n)V \sim \chi^2(n), Z,VZ, V 獨立,則 T=ZV/nT = \frac{Z}{\sqrt{V/n}} 稱為自由度為n的t分佈,記為 t(n)t(n)
  • pdf:f(t)=Γ(n+12)nπΓ(n2)(1+t2n)n+12\displaystyle f(t) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi} \Gamma(\frac{n}{2})} (1 + \frac{t^2}{n})^{-\frac{n+1}{2}}, <t<-\infty < t < \infty

    證明:

    1. Derive the pdf of Uˉ/n=Y\bar{U}/n = Y
      FY(y)=P(Uˉ/ny)=P(Uˉny2)=FUˉ(ny2)fY(y)=ddyFY(y)=ddyFUˉ(ny2)=(2ny)fUˉ(ny2)=(2ny)12(n/2)Γ(n/2)(ny2)(n/2)1eny2/2=12(n/2)1Γ(n/2)nn/2yn1eny2/2\begin{aligned} F_Y(y) &= P(\sqrt{\bar{U}/n} \leq y) = P(\bar{U} \leq ny^2) = F_{\bar{U}}(ny^2) \\ f_Y(y) &= \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_{\bar{U}}(ny^2) = (2ny) f_{\bar{U}}(ny^2) \\ &= (2ny) \frac{1}{2^{(n/2)} \Gamma(n/2)} (ny^2)^{(n/2) - 1} e^{-ny^2/2} = \frac{1}{2^{(n/2)-1}\Gamma(n/2)}n^{n/2} y^{n-1} e^{-ny^2/2} \end{aligned}
    2. The pdf of T=Z/YT = Z/Y
      fT(t)=yfZ,Y(y,ty)dy=yfY(y)fZ(ty)dy=[y12(n/2)1Γ(n/2)nn/2yn1eny2/2][12πet2y2/2]dy=[nn/22(n/2)1Γ(n/2)π]0yne(n+t2)y2/2dy\displaystyle \begin{aligned} f_T(t) &= \int_{-\infty}^{\infty} |y| f_{Z, Y}(y, ty) dy \\[10pt] &= \int_{-\infty}^{\infty} y f_Y(y) f_Z(ty) dy \\[10pt] &= \int_{-\infty}^{\infty} \left[ y \frac{1}{2^{(n/2)-1}\Gamma(n/2)}n^{n/2} y^{n-1} e^{-ny^2/2}\right] \left[\frac{1}{\sqrt{2\pi}} e^{-t^2y^2/2}\right] dy \\[10pt] &= \left[ \frac{n^{n/2}}{2^{(n/2)-1}\Gamma(n/2) \sqrt{\pi}} \right] \int_{0}^{\infty} y^{n} e^{-(n+t^2)y^2/2} dy \end{aligned}
    3. Derive the integral
      0yne(n+t2)y2/2dy=0(y2)n/2e(n+t2)y2/2dy=120(y2)(n1)/2e(n+t2)y2/2(2y)dy=12s(n1)/2e(n+t2)s/2ds=12Γ((n+1)/2)[(n+t2)/2](n+1)/20((n+t2)/2)(n+1)/2Γ((n+1)/2)s(n+1)/21e(n+t2)s/2ds=12Γ((n+1)/2)[(n+t2)/2](n+1)/2\begin{aligned} \int_{0}^{\infty} y^{n} e^{-(n+t^2)y^2/2} dy &= \int_{0}^{\infty} (y^2)^{n/2} e^{-(n+t^2)y^2/2} dy \\[10pt] &= \frac{1}{2} \int_{0}^{\infty} (y^2)^{(n-1)/2} e^{-(n+t^2)y^2/2} (2y) dy \\[10pt] &= \frac{1}{2} s^{(n-1)/2} e^{-(n+t^2)s/2} ds \\[10pt] &= \frac{1}{2} \frac{\Gamma((n+1)/2)}{[(n+t^2)/2]^{(n+1)/2}} \int_{0}^{\infty} \frac{((n+t^2)/2)^{(n+1)/2}}{\Gamma((n+1)/2)} s^{(n+1)/2-1} e^{-(n+t^2)s/2} ds \\[10pt] &= \frac{1}{2} \frac{\Gamma((n+1)/2)}{[(n+t^2)/2]^{(n+1)/2}} \end{aligned}
    4. Derive the pdf of TT
      fT(t)=nn/22(n/2)1Γ(n/2)π[12Γ((n+1)/2)[(n+t2)/2](n+1)/2]=Γ((n+1)/2)(nπ)Γ(n/2)[1+t2n](n+1)/2\displaystyle f_T(t) = \frac{n^{n/2}}{2^{(n/2)-1}\Gamma(n/2) \sqrt{\pi}} \left[\frac{1}{2} \frac{\Gamma((n+1)/2)}{[(n+t^2)/2]^{(n+1)/2}}\right] = \frac{\Gamma((n+1)/2)}{\sqrt{(n\pi)} \Gamma(n/2)} \left[1 + \frac{t^2}{n}\right]^{-(n+1)/2}
      <t<-\infty < t < \infty
      FACT:
      tnZt_n \rightarrow Z as nn \rightarrow \infty
      limn[1+t2n](n+1)/2=limn[1+t2/2n/2]n/2[1+t2/2n]1/2=et2/2\displaystyle \lim_{n \rightarrow \infty} \left[1 + \frac{t^2}{n}\right]^{(n+1)/2} = \lim_{n \rightarrow \infty} \left[1 + \frac{t^2/2}{n/2}\right]^{n/2}\left[1 + \frac{t^2/2}{n}\right]^{1/2} = e^{t^2/2}

F分佈

  • 定義:Uˉχ2(m)\bar{U} \sim \chi^2(m), Vˉχ2(n)\bar{V} \sim \chi^2(n), Uˉ,Vˉ\bar{U}, \bar{V} 獨立,則 F=Uˉ/mVˉ/n\displaystyle F = \frac{\bar{U}/m}{\bar{V}/n} 稱為自由度為m, n的F分佈,記為 F(m,n)F(m, n)
  • pdf:f(f)=Γ(m+n2)Γ(m2)Γ(n2)(mn)m/2fm/21(1+mnf)(m+n)/2\displaystyle f(f) = \frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2}) \Gamma(\frac{n}{2})} \left(\frac{m}{n}\right)^{m/2} f^{m/2 - 1} (1 + \frac{m}{n} f)^{-(m+n)/2}, f>0f > 0

    證明:

    • Uˉχ2(m)\bar{U} \sim \chi^2(m), Vˉχ2(n)\bar{V} \sim \chi^2(n), Uˉ,Vˉ\bar{U}, \bar{V} 獨立,則 Uˉ/mVˉ/nF(m,n)\displaystyle \frac{\bar{U}/m}{\bar{V}/n} \sim F(m, n)
      fUˉ(u)=12m/2Γ(m/2)um/21eu/2fVˉ(v)=12n/2Γ(n/2)vn/21ev/2\begin{aligned} \displaystyle f_{\bar{U}}(u) &= \frac{1}{2^{m/2} \Gamma(m/2)} u^{m/2 - 1} e^{-u/2} \\[10pt] f_{\bar{V}}(v) &= \frac{1}{2^{n/2} \Gamma(n/2)} v^{n/2 - 1} e^{-v/2} \end{aligned}
    1. F=Uˉ/mVˉ/n{Uˉ=uVˉ=(m/n)u\displaystyle F = \frac{\bar{U}/m}{\bar{V}/n} \Rightarrow \begin{cases} \bar{U} = u \\ \bar{V} = (m/n) u \end{cases}

      Jacobian : J=Vˉ/FVˉ/uUˉ/FUˉ/u=(m/n)u(m/n)F01=mnu\displaystyle |J| = \begin{vmatrix} \partial \bar{V}/\partial F & \partial \bar{V}/\partial u \\ \partial \bar{U}/\partial F & \partial \bar{U}/\partial u \end{vmatrix} = \begin{vmatrix} (m/n) u & (m/n) F \\ 0 & 1 \end{vmatrix} = -\frac{m}{n} u

    2. f(F,u)=fUˉ(u)fVˉ((m/n)u)J=(m/n)m/22(m+n)/2Γ(m/2)Γ(n/2)u(m+n)/21eu(1+(m/n)F)Fm/21\displaystyle f(F, u) = f_{\bar{U}}(u) f_{\bar{V}}((m/n)u) |J| = \frac{(m/n)^{m/2}}{2^{(m+n)/2} \Gamma(m/2) \Gamma(n/2)} u^{(m+n)/2 - 1} e^{-u(1+(m/n)F)} F^{m/2 - 1}

    3. The pdf of FF
      f(F)=0f(F,u)du=(m/n)m/2Fm/212(m+n)/2Γ(m/2)Γ(n/2)0u(m+n)/21eu(1+(m/n)F)/2du=(m/n)m/2Fm/212(m+n)/2Γ(m/2)Γ(n/2)Γ((m+n)/2)(1+(m/n)F)(m+n)/2=Γ((m+n)/2)Γ(m/2)Γ(n/2)(mn)m/2Fm/21(1+mnF)(m+n)/2\displaystyle \begin{aligned} f(F) = \int_{0}^{\infty} f(F, u) du &= \frac{(m/n)^{m/2}F^{m/2 - 1}}{2^{(m+n)/2} \Gamma(m/2) \Gamma(n/2)} \int_{0}^{\infty} u^{(m+n)/2 - 1} e^{-u(1+(m/n)F)/2} du \\[10pt] &= \frac{(m/n)^{m/2}F^{m/2 - 1}}{2^{(m+n)/2} \Gamma(m/2) \Gamma(n/2)} \frac{\Gamma((m+n)/2)}{(1+(m/n)F)^{(m+n)/2}} \\[10pt] &= \frac{\Gamma((m+n)/2)}{\Gamma(m/2) \Gamma(n/2)} \left(\frac{m}{n}\right)^{m/2} F^{m/2 - 1} (1 + \frac{m}{n} F)^{-(m+n)/2} \end{aligned}

樣本平均數 & 樣本變異數

X1,X2,...,XniidN(μ,σ2)X_1, X_2, ..., X_n \xrightarrow{iid} N(\mu, \sigma^2)

  • 樣本平均數:Xˉ=1ni=1nXi\displaystyle \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
  • 樣本變異數:S2=1n1i=1n(XiXˉ)2\displaystyle S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2

引理:Xˉn\bar{X}_n and Sn2S^2_n are independent