LOADING

進度條正在跑跑中

Notes for functional analysis

2024/9/23 數理化 LaTeX

Normed vector spaces and Banach spaces

In the following let XX be a linear space (vector space) over the field F=R,C\mathbb{F} = {\mathbb{R}, \mathbb{C}}.

Definition 1.1.

A seminorm on XX is a map p:XR+p: X \to \mathbb{R}_{+} such that

  1. p(αx)=αp(x)p(\alpha x) = |\alpha|p(x) for all αF,xX\alpha \in \mathbb{F}, x \in X
  2. p(x+y)p(x)+p(y)p(x + y) \leq p(x) + p(y) for all x,yXx, y \in X
  3. p(x)=0x=0p(x) = 0 \Rightarrow x = 0

then pp is called a norm.
 Usually one writes p(x)=xp(x) = \|x\|, p=p= \|\cdot\|.
 The pair (X,)(X, \|\cdot\|) is called a normed vector space.

Definition 1.2.

Let (xn)nN(x_n)_{n \in \mathbb{N}} be a sequence in a normed vector space X(X,)X(X, \|\cdot\|). then

  • (xn)(x_n) converges to a limit xXx \in X if ε>0,NN\forall \varepsilon > 0, \exists N \in \mathbb{N} such that for all nNn \geq N, xnx<ε\|x_n - x\| < \varepsilon.
  • (xn)(x_n) is a Cauchy sequence if ε>0,NN\forall \varepsilon > 0, \exists N \in \mathbb{N} such that for all m,nNm, n \geq N, xnxm<ε\|x_n - x_m\| < \varepsilon.
  • (X,)(X, \|\cdot\|) is complete if every Cauchy sequence in XX converges.
  • A complete normed vector space is called a Banach space.

Metric spaces

Definition

Given a set MM\neq \emptyset, a metric (or distance) dd on MM is a map d:M×MRd: M \times M \to \mathbb{R} such that

  1. d(x,y)0d(x, y) \geq 0 for all x,yMx, y \in M and d(x,y)=0x=yd(x, y) = 0 \Leftrightarrow x = y
  2. d(x,y)=d(y,x)d(x, y) = d(y, x) for all x,yMx, y \in M
  3. d(x,y)d(x,z)+d(z,y)d(x, y) \leq d(x, z) + d(z, y) for all x,y,zMx, y, z \in M

The par (M,d)(M, d) is called a metric space.
A sequence (xn)nN(x_n)_{n \in \mathbb{N}} in a metric space (M,d)(M, d) convergesconverges to xMx \in M if ε>0,NN\forall \varepsilon > 0, \exists N \in \mathbb{N} such that for all nNn \geq N, d(xn,x)<εd(x_n, x) < \varepsilon.